BeautifulSoup | Complete Cheatsheet with Examples

Inhaltsverzeichnis

Installation

pip install beautifulsoup4
from bs4 import BeautifulSoup

Creating a BeautifulSoup Object

Parse HTML string:

html = "<p>Example paragraph</p>"
soup = BeautifulSoup(html, 'html.parser')

Parse from file:

with open("index.html") as file:
  soup = BeautifulSoup(file, 'html.parser')

BeautifulSoup Object Types

When parsing documents and navigating the parse trees, you will encounter the following main object types:

Tag

A Tag corresponds to an HTML or XML tag in the original document:

soup = BeautifulSoup('<p>Hello World</p>')
p_tag = soup.p

p_tag.name # 'p'
p_tag.string # 'Hello World'

Tags contain nested Tags and NavigableStrings.

NavigableString

A NavigableString represents text content without tags:

soup = BeautifulSoup('Hello World')
text = soup.string

text # 'Hello World'
type(text) # bs4.element.NavigableString

BeautifulSoup

The BeautifulSoup object represents the parsed document as a whole. It is the root of the tree:

soup = BeautifulSoup('<html>...</html>')

soup.name # '[document]'
soup.head # <head> Tag element

Comment

Comments in HTML are also available as Comment objects:

<!-- This is a comment -->

Copy

comment = soup.find(text=re.compile('This is'))
type(comment) # bs4.element.Comment

Knowing these core object types helps when analyzing, searching, and navigating parsed documents.

Searching the Parse Tree

By Name

HTML:

<div>
  <p>Paragraph 1</p>
  <p>Paragraph 2</p>
</div>

Python:

paragraphs = soup.find_all('p')
# <p>Paragraph 1</p>, <p>Paragraph 2</p>

By Attributes

HTML:

<div id="content">
  <p>Paragraph 1</p>
</div>

Python:Copy

div = soup.find(id="content")
# <div id="content">...</div>

By Text

HTML:

<p>This is some text</p>

Python:

p = soup.find(text="This is some text")
# <p>This is some text</p>

Searching with CSS Selectors

CSS selectors provide a very powerful way to search for elements within a parsed document.

Some examples of CSS selector syntax:

By Tag Name

Select all

tags:

soup.select("p")

By ID

Select element with ID “main”:

soup.select("#main")

By Class Name

Select elements with class “article”:

soup.select(".article")

By Attribute

Select tags with a “data-category” attribute:

soup.select("[data-category]")

Descendant Combinator

Select paragraphs inside divs:

soup.select("div p")

Child Combinator

Select direct children paragraphs:

soup.select("div > p")

Adjacent Sibling

Select h2 after h1:

soup.select("h1 + h2")

General Sibling

Select h2 after any h1:

soup.select("h1 ~ h2")

By Text

Select elements containing text:

soup.select(":contains('Some text')")

By Attribute Value

Select input with type submit:

soup.select("input[type='submit']")

Pseudo-classes

Select first paragraph:

soup.select("p:first-of-type")

Chaining

Select first article paragraph:

soup.select("article > p:nth-of-type(1)")

Accessing Data

HTML:

<p class="content">Some text</p>

Python:

p = soup.find('p')
p.name # "p"
p.attrs # {"class": "content"}
p.string # "Some text"

The Power of find_all()

The find_all() method is one of the most useful and versatile searching methods in BeautifulSoup.

Returns All Matches

find_all() will find and return a list of all matching elements:

all_paras = soup.find_all('p')

This gives you all paragraphs on a page.

Flexible Queries

You can pass a wide range of queries to find_all():Name – find_all(‘p’)Attributes – find_all(‘a’, class_=’external’)Text – find_all(text=re.compile(‘summary’))Limit – find_all(‘p’, limit=2)And more!

Useful Features

Some useful things you can do with find_all():Get a count – len(soup.find_all(‘p’))Iterate through results – for p in soup.find_all(‘p’):Convert to text – [p.get_text() for p in soup.find_all(‘p’)]Extract attributes – [a[‘href’] for a in soup.find_all(‘a’)]

Why It’s Useful

In summary, find_all() is useful because:It returns all matching elementsIt supports diverse and powerful queriesIt enables easily extracting and processing result data

Whenever you need to get a collection of elements from a parsed document, find_all() will likely be your go-to tool.

Navigating Trees

Traverse up and sideways through related elements.

Modifying the Parse Tree

BeautifulSoup provides several methods for editing and modifying the parsed document tree.

HTML:

<p>Original text</p>

Python:

p = soup.find('p')
p.string = "New text"

Edit Tag Names

Change an existing tag name:

tag = soup.find('span')
tag.name = 'div'

Edit Attributes

Add, modify or delete attributes of a tag:

tag['class'] = 'header' # set attribute
tag['id'] = 'main'

del tag['class'] # delete attribute

Edit Text

Change text of a tag:

tag.string = "New text"

Append text to a tag:

tag.append("Additional text")

Insert Tags

Insert a new tag:

new_tag = soup.new_tag("h1")
tag.insert_before(new_tag)

Delete Tags

Remove a tag entirely:

tag.extract()

Wrap/Unwrap Tags

Wrap another tag around:

tag.wrap(soup.new_tag('div))

Unwrap its contents:

tag.unwrap()

Modifying the parse tree is very useful for cleaning up scraped data or extracting the parts you need.

Outputting HTML

Input HTML:

<p>Hello World</p>

Python:

print(soup.prettify())

# <p>
#  Hello World
# </p>

Integrating with Requests

Fetch a page:

import requests

res = requests.get("<https://example.com>")
soup = BeautifulSoup(res.text, 'html.parser')

Parsing Only Parts of a Document

When dealing with large documents, you may want to parse only a fragment rather than the whole thing. BeautifulSoup allows for this using SoupStrainers.

There are a few ways to parse only parts of a document:

By CSS Selector

Parse just a selection matching a CSS selector:

from bs4 import SoupStrainer

only_tables = SoupStrainer("table")
soup = BeautifulSoup(doc, parse_only=only_tables)

This will parse only the tags from the document.

By Tag Name

Parse only specific tags:

only_divs = SoupStrainer("div")
soup = BeautifulSoup(doc, parse_only=only_divs)

By Function

Pass a function to test if a tag should be parsed:

def is_short_string(string):
  return len(string) < 20

only_short_strings = SoupStrainer(string=is_short_string)
soup = BeautifulSoup(doc, parse_only=only_short_strings)

This parses tags based on their text content.

By Attributes

Parse tags that contain specific attributes:

has_data_attr = SoupStrainer(attrs={"data-category": True})
soup = BeautifulSoup(doc, parse_only=has_data_attr)

Multiple Conditions

You can combine multiple strainers:

strainer = SoupStrainer("div", id="main")
soup = BeautifulSoup(doc, parse_only=strainer)

This will parse only

.

Parsing only parts you need can help reduce memory usage and improve performance when scraping large documents.

Dealing with Encoding

When parsing documents, you may encounter encoding issues. Here are some ways to handle encoding:

Specify at Parse Time

Pass the from_encoding parameter when creating the BeautifulSoup object:

soup = BeautifulSoup(doc, from_encoding='utf-8')

This handles any decoding needed when initially parsing the document.

Encode Tag Contents

You can encode the contents of a tag:

tag.string.encode("utf-8")

Use this when outputting tag strings.

Encode Entire Document

To encode the entire BeautifulSoup document:

soup.encode("utf-8")

This returns a byte string with the encoded document.

Pretty Print with Encoding

Specify encoding when pretty printing

print(soup.prettify(encoder="utf-8"))

Unicode Dammit

BeautifulSoup’s UnicodeDammit class can detect and convert incoming documents to Unicode:

from bs4 import UnicodeDammit

dammit = UnicodeDammit(doc)
soup = dammit.unicode_markup

This converts even poorly encoded documents to Unicode.

Properly handling encoding ensures your scraped data is decoded and output correctly when using BeautifulSoup.